Альфа бета гамма дельта излучение. Опасности альфа-излучения

Альфа бета гамма дельта излучение. Опасности альфа-излучения

Слово радиация, в переводе с английского "radiation" означает излучение и применяется не только в отношении радиоактивности, но целого ряда других физических явлений, например: солнечная радиация, тепловая радиация и др. Поэтому в отношении радиоактивности следует применять принятое МКРЗ (Международной комиссией по радиационной защите) и Нормами радиационной безопасности понятие "ионизирующее излучение".

ионизирующее излучение ( ИОНИЗИРУЮЩАЯ РАДИАЦИЯ )?

Ионизирующее излучение - излучение (электромагнитное, корпускулярное), которое при взаимодействии с веществом непосредственно или косвенно вызывает ионизацию и возбуждение его атомов и молекул. Энергия ионизирующего излучения достаточно велика, чтобы при взаимодействии с веществом, создать пару ионов разных знаков, т.е. ионизировать ту среду в которую попали эти частицы или гамма кванты.

Ионизирующее излучение состоит из заряженных и незаряженных частиц, к которым относятся также фотоны.

Что такое радиоактивность?

Радиоактивность - самопроизвольное превращение атомных ядер в ядра других элементов. Сопровождается ионизирующим излучением. Известно четыре типа радиоактивности:

  • альфа-распад - радиоактивное превращение атомного ядра при котором испускается альфа-частица;
  • бета-распад - радиоактивное превращение атомного ядра при котором испускается бета-частицы, т.е электроны или позитроны;
  • спонтанное деление атомных ядер - самопроизвольное деление тяжелых атомных ядер (тория, урана, нептуния, плутония и других изотопов трансурановых элементов). Периоды полураспада у спонтанно делящихся ядер составляют от нескольких секунд до 1020 для Тория-232;
  • протонная радиоактивность - радиоактивное превращение атомного ядра при котором испускаются нуклоны (протоны и нейтроны).

Что такое изотопы?

Изотопы - это разновидности атомов одного и того же химического элемента, обладающие разными массовыми числами, но имеющие одинаковый электрический заряд атомных ядер и потому занимающие в периодической системе элементов Д.И. Менделеева одинаковое место. Например: 55Cs131, 55Cs134m, 55Cs134, 55Cs135, 55Cs136, 55Cs137. Различают изотопы устойчивые (стабильные) и неустойчивые - самопроизвольно распадающиеся путем радиоактивного распада, так называемые радиоактивные изотопы. Известно около 250 стабильных, и около 50 естественных радиоактивных изотопов. Примером устойчивого изотопа может служить Pb206, Pb208 являющийся конечным продуктом распада радиоактивных элементов U235, U238 и Th232.

ПРИБОРЫ ДЛЯ измерения радиации и радиоактивности.

Для измерения уровней радиации и содержания радионуклидов на различных объектах используются специальные средства измерения:

  • для измерения мощности экспозиционной дозы гамма излучения, рентгеновского излучения, плотности потока альфа и бета-излучения, нейтронов, используются дозиметры различного назначения;
  • для определения вида радионуклида и его содержания в объектах окружающей среды используются спектрометрические тракты, состоящие из детектора излучения, анализатора и персонального компьютера с соответствующей программой для обработки спектра излучения.

В настоящее время в магазинах можно купить различные виды измерителей радиации различного типа, назначения, и обладающие широкими возможностями. Для примера приведём несколько моделей приборов, которые наиболее популярные в профессиональной и бытовой деятельности:

Профессиональный дозиметр-радиометр, был разработан для радиационного контроля денежных купюр операционистами банков, в целях исполнения "Инструкция Банка России от 04.12.2007 N 131-И "О порядке выявления, временного хранения, гашения и уничтожения денежных знаков с радиоактивным загрязнением"".

Лучший бытовой дозиметр от ведущего производителя, данный портативный измеритель радиации зарекомендовал себя временем. Благодаря простому использованию, небольшому размеру и низкой цене, пользователи назвали его народным, рекомендуют его друзьям и знакомым, не боясь за рекомендацию.

СРП-88Н (сцинтилляционный радиометр поиска) - профессиональный радиометр предназначен для поиска и обнаружения источников фотонного излучения. Имеет цифровой и стрелочный индикаторы, возможность установки порога срабатывания звукового сигнализатора, что значительно облегчает работу при обследовании территорий, проверки металлолома др. Блок детектирования выносной. В качестве детектора используется сцинтилляционный кристалл NaI. Автономный источник питания 4 элемента Ф-343.

ДБГ-06Т - предназначен для измерения мощности экспозиционной дозы (МЭД) фотонного излучения. Источник питания гальванический элемент типа «Корунд».

ДРГ-01Т1 - предназначен для измерения мощности экспозиционной дозы (МЭД) фотонного излучения.

ДБГ-01Н - предназначен для обнаружения радиоактивного загрязнения и оценки с помощью звукового сигнализатора уровня мощности эквивалентной дозы фотонного излучения. Источник питания гальванический элемент типа «Корунд». Диапазон измерения от 0.1 мЗв*ч-1 до 999.9 мЗв*ч-1

РКС-20.03 «Припять» - предназначен для контроля радиационной обстановки в местах проживания, пребывания и работы.

Дозиметры позволяют измерять:

  • величину внешнего гамма-фона;
  • уровни загрязнения радиоактивными веществами жилых и общественных помещений, территории, различных поверхностей
  • суммарное содержание радиоактивных веществ (без определения изотопного состава) в продуктах питания и других объектах внешней среды (жидких и сыпучих)
  • уровни загрязнения радиоактивными веществами жилых и общественных помещений, территории, различных поверхностей;
  • суммарное содержание радиоактивных веществ (без определения изотопного состава) в продуктах питания и других объектах внешней среды (жидких и сыпучих).

Как выбрать измеритель радиации и другие приборы для измерения радиации вы можете прочитать в статье "Бытовой дозиметр и индикатор радиоактивности. как выбрать? "

Какие виды ионизирующего излучения существуют?

Виды ионизирующего излучения. Основными видами ионизирующего излучения, с которыми нам чаще всего приходится сталкиваться являются:



Конечно существуют и другие виды излучения (нейтронное), но с ними мы сталкиваемся в повседневной жизни значительно реже. Различие этих видов излучения заключается в их физических характеристиках, в происхождении, в свойствах, в радиотоксичности и поражающем действии на биологические ткани.

Источники радиоактивности могут быть природными или искусственными. Природные источники ионизирующего излучения это естественные радиоактивные элементы находящиеся в земной коре и создающие природный радиационный фон, это ионизирующее излучение приходящее к нам из космоса. Чем больше активность источника (т.е. чем больше в нем распадается атомов за единицу времени), тем больше он испускает за единицу времени частиц или фотонов.

Искусственные источники радиоактивности могут содержать радиоактивные вещества полученные в ядерных реакторах специально или являющиеся побочными продуктами ядерных реакций. В качестве искусственных источников ионизирующего излучения могут быть и различные электровакуумные физические приборы, ускорители заряженных частиц и др. Например: кинескоп телевизора, рентгеновская трубка, кенотрон и др.

Основными поставщиками радия-226 в окружающую природную среду являются предприятия занимающиеся добычей и переработкой различных ископаемых материалов:

  • добыча и переработка урановых руд;
  • добыча нефти и газа; угольная промышленность;
  • промышленность строительных материалов;
  • предприятия энергетической промышленности и др.

Радий-226 хорошо поддается выщелачиванию из минералов содержащих уран, этим его свойством объясняется наличие значительных количеств радия в некоторых видах подземных вод (радоновых применяемых в медицинской практике), в шахтных водах. Диапазон содержания радия в подземных водах колеблется от единиц до десятков тысяч Бк/л. Содержание радия в поверхностных природных водах значительно ниже и может составлять от 0.001 до 1-2 Бк/л. Существенной составляющей природной радиоактивности является продукт распада радия-226- радий-222 (Радон). Радон - инертный, радиоактивный газ, наиболее долгоживущий (период полураспада 3.82 дня) изотоп эманации *, альфа-излучатель. Он в 7.5 раза тяжелее воздуха, поэтому преимущественно накапливается погребах, подвалах, цокольных этажах зданий, в шахтных горных выработках, и т.д. * - эманирование- свойство веществ содержащих изотопы радия (Ra226, Ra224, Ra223), выделять образующиеся при радиоактивном распаде эманацию(радиоактивные инертные газы).

Считается, что до 70% вредного воздействия на население связано с радоном в жилых зданиях (см. диаграмму). Основным источником поступления радона в жилые здания являются (по мере возрастания значимости):

  • водопроводная вода и бытовой газ;
  • строительные материалы (щебень, глина, шлаки, золошлаки и др.);
  • почва под зданиями.

Распространяется радон в недрах Земли крайне не равномерно. Характерно его накопление в тектонических нарушениях, куда он поступает по системам трещин из пор и микротрещин пород. В поры и трещины он поступает за счет процесса эманирования, образуясь в веществе горных пород при распаде радия-226.

Радоновыделение почвы определяется радиоактивностью горных пород, их эманированием и коллекторными свойствами. Так, сравнительно слаборадиоактивные породы, оснований зданий и сооружений могут, представлять большую опасность, чем более радиоактивные, если они характеризуются высоким эманированием, или рассечены тектоническими нарушениями, накапливающими радон. При своеобразном «дыхании» Земли, радон поступает из горных пород в атмосферу. Причем в наибольших количествах - из участков на которых имеются коллекторы радона (сдвиги, трещины, разломы и др.), т.е. геологические нарушения. Собственные наблюдения за радиационной обстановкой в угольных шахтах Донбасса показали, что в шахтах, характеризующихся сложными горно-геологическими условиями (наличие множественных разломов и трещин в угле вмещающих породах, высокая обводненность и др.) как правило, концентрация радона в воздухе горных выработок значительно превышает установленные нормативы.

Возведение жилых и общественно-хозяйственных сооружений непосредственно над разломами и трещинами горных пород, без предварительного определения радоновыделения из почвы, приводит к тому, что в них из недр Земли поступает грунтовый воздух, содержащий высокие концентрации радона, который накапливается в воздухе помещений и создает радиационную опасность.

Техногенная радиоактивность возникает в результате деятельности человека в процессе которой происходит перераспределение и концентрирование радионуклидов. К техногенной радиоактивности относится добыча и переработка полезных ископаемых, сжигание каменного угля и углеводородов, накопление промышленных отходов и многое другое. Уровни воздействия на человека различных техногенных факторов иллюстрирует представленная диаграмма 2 (А.Г. Зеленков "Сравнительное воздействие на человека различных источников радиации", 1990 г.)

Что такое "черные пески" и какую опасность они представляют?

Черные пески представляют собой минерал монацит - безводный фосфат элементов ториевой группы, главным образом церия и лантана (Ce, La)PO4, которые замещаются торием. Монацит содержит до 50-60% окисей редкоземельных элементов: окиси иттрия Y2O3 до 5%, окиси тория ThO2 до 5-10%, иногда до 28%. Удельный вес монацита составляет 4.9-5.5. С повышением содержания тория уд. вес возрастает. Встречается в пегматитах, иногда в гранитах и гнейсах. При разрушении горных пород включающих монацит, он накапливается в россыпях, которые представляют собой крупные месторождения.

Такие месторождения наблюдаются и на юге Донецкой области.

Россыпи монацитовых песков находящиеся на суше, как правило не вносят существенного изменения в сложившуюся радиационную обстановку. А вот месторождения монацита находящиеся у прибрежной полосы Азовского моря (в пределах Донецкой области) создают ряд проблем особенно с наступлением купального сезона.

Дело в том, что в результате морского прибоя за осенне-весенний период на побережье, в результате естественной флотации, скапливается значительное количество "черного песка", характеризующегося высоким содержанием тория-232 (до 15-20 тыс. Бк*кг-1 и более), который создает на локальных участках уровни гамма-излучения порядка 300 и более мкР*час-1. Естественно, отдыхать на таких участках рискованно, поэтому, ежегодно проводится сбор этого песка, выставляются предупреждающие знаки, закрываются отдельные участки побережья. Но все это не позволяет предотвратить нового накопления "черного песка".

Позволю высказать по этому поводу личную точку зрения. Причиной, способствующей выносу "черного песка" на побережье, возможно является тот факт, что на фарватере Мариупольского морского порта постоянно работают земснаряды по расчистке судоходного канала. Грунт, поднятый со дна канала, сваливается западнее судоходного канала, в 1-3 км от побережья (см. карту размещения мест свалки грунта), и при сильном волнении моря, с накатом на прибрежную полосу, грунт содержащий монацитовый песок выносится на побережье, где обогащается и накапливается. Однако все это требует тщательной проверки и изучения. И если это как, то снизить накопление "черного песка" на побережье, возможно, удалось бы просто переносом места свалки грунта в другое место.

Основные правила выполнения дозиметрических измерений.

При проведении дозиметрических измерений, прежде всего, необходимо строго придерживаться рекомендаций изложенных в технической документации на прибор.

При измерении мощности экспозиционной дозы гамма-излучения или эквивалентной дозы гамма-излучения необходимо соблюдать следующие правила:

  • при проведении любых дозиметрических измерений, если предполагается их постоянное проведения с целью наблюдения за радиационной обстановкой, необходимо строго соблюдать геометрию измерения;
  • для повышения достоверности результатов дозиметрического контроля проводится несколько измерений (но не менее 3-х), и вычисляется среднее арифметическое;
  • при выполнении измерений на территории выбирают участки вдали от зданий и сооружений (2-3 высоты); -измерения на территории проводят на двух уровнях, на высоте 0.1 и 1.0 м от поверхности грунта;
  • при измерении в жилых и общественных помещениях, измерения проводятся в центре помещения на высоте 1.0 м от пола.

При измерении уровней загрязнения радионуклидами различных поверхностей необходимо выносной датчик или прибор в целом, если выносного датчика нет, поместить в полиэтиленовый пакет (для предотвращения возможного загрязнения), и проводить измерение на максимально возможно близком расстоянии от измеряемой поверхности.

Альфа-излучение (альфа-лучи) - это один из видов ионизирующих излучений; представляет собой поток быстро движущихся, обладающих значительной энергией, положительно заряженных частиц (альфа-частиц).

Основным источником альфа-излучения служат альфа-излучатели - , испускающие альфа-частицы в процессе распада. Особенностью альфа-излучений является его малая проникающая способность. Пробег альфа-частиц в веществе (то есть путь, на котором они производят ионизацию) оказывается очень коротким (сотые доли миллиметра в биологических средах, 2,5-8 см в воздухе).

Однако вдоль короткого пути альфа-частицы создают большое число ионов, то есть обусловливают большую линейную плотность ионизации. Это обеспечивает выраженную относительную биологическую эффективность, в 10 раз большую, чем при воздействии рентгеновского и . При внешнем облучении тела альфачастицы могут (при достаточно большой поглощенной дозе излучения) вызывать сильные, хотя и поверхностные (короткий пробег) ожоги; при попадании через долгоживущие альфа-излучатели разносятся по телу током крови и депонируются в органах и др., вызывая внутреннее облучение организма. Альфа-излучение применяют для лечения некоторых заболеваний. См. также , Излучения ионизирующие.

Альфа-излучение - поток положительно заряженных α-частиц (ядер атомов гелия).

Основным источником альфа-излучения являются естественные радиоактивные изотопы, многие из которых испускают при распаде альфа-частицы с энергией от 3,98 до 8,78 Мэв. Благодаря большой энергии, двукратному (по сравнению с электроном) заряду и относительно небольшой (по сравнению с другими видами ионизирующих излучений) скорости движения (от 1,4·10 9 до 2,0·10 9 см/сек) альфа-частицы создают очень большое число ионов, густо расположенных по их пути (до 254 тыс. пар ионов). При этом они быстро расходуют свою энергию, превращаясь в обычные атомы гелия. Пробеги альфа-частиц в воздухе при нормальных условиях - от 2,50 до 8,17 см; в биологических средах - сотые доли миллиметра.

Линейная плотность ионизации, создаваемой альфа-частицами, достигает нескольких тысяч пар ионов на 1 микрон пути в тканях.

Ионизация, производимая альфа-излучением, обусловливает ряд особенностей в тех химических реакциях, которые протекают в веществе, в частности в живой ткани (образование сильных окислителей, свободного водорода и кислорода и др.). Эти радиохимические реакции, протекающие в биологических тканях под воздействием альфа-излучения, в свою очередь вызывают особую, большую, чем у других видов ионизирующих излучений, биологическую эффективность альфа-излучения. По сравнению с рентгеновским, бета- и гамма-излучением относительная биологическая эффективность альфа-излучения (ОБЭ) принимается равной 10, хотя в различных случаях она может меняться в широких пределах. Как и другие виды ионизирующих излучений, альфа-излучение применяется для лечения больных с различными заболеваниями. Этот раздел лучевой терапии называется альфа-терапией (см.).

См. также Излучения ионизирующие, Радиоактивность.

Достаточно большой перечень вопросов породило необычайное открытие радиоактивности. Величайший прорыв в данной сфере сделал ученый Э. Резерфорд, который поместил в магнитное поле особый излучатель, а именно — радиоактивный. В итоге пучок распался на три составляющие.

Особенности излучения

На основе серии опытов, стало известно, что альфа-излучение – это поток положительных частиц, а их параметры абсолютно идентичны тем, которые имеются у ядер гелия. Что касается атома гелия, то у него только 2 электрона.

Помимо альфа-лучей, обнаружены гамма и бета, каждый из них обладает особой силой, имеет радиоактивность. Таким образом, можно смело утверждать, что излучение альфа – это дважды ионизированный атом гелия. Альфа является положительно заряженным, гамма – нейтральным, а что касается бета, то он является отрицательным лучом. Альфа, гамма, а также бета имеют сильные отличия, касающиеся способности проникающей. Простыми словами, гамма, альфа, бета отличны тем, что они поглощаются разными компонентами с различной интенсивностью.

Гамма – это лучи, напоминающие излучение рентгена, но их проникающая способность гораздо выше. Это приводило к мысли, что гамма лучи являются электромагнитными волнами. Однако сомнения отошли в сторону, когда обнаружили дифракцию гамма лучей на особых кристаллах также была определена их длина. Как ни странно, длина вол гамма лучей очень маленькая, а именно – до 10-11 сантиметров.

Что касается бета-лучей, то их рассматривали в качестве заряженной частицы. С бета было намного легче проводить эксперименты. Цель проведенных исследований – определит массу, заряд бета-лучей. Было установлено, что бета-частицы являются электронами, скорость движения которых приближена к скорости света.

Альфа-излучения имеют источники:

  • реакторы;
  • объекты промышленности урановой;
  • распад весьма тяжелых химических элементов, в результате чего наблюдается проявление ядер гелия;
  • эксперименты, которые осуществляются на ускорителях частиц, лабораториях радиоизотопных;
  • ускорение гелия.

Каждый из указанных лучей имеет собственный спектр излучения. Простыми словами, спектр – это распределение частиц согласно величинам измеряемым, которое приведено к определенным условиям. Спектр различают по виду частиц. Что касается альфа-спектра, то его принято считать дискретным.

Методы защиты

Альфа-излучения имеют свой спектр, а также определенную радиоактивность, которые способны оказывать пагубное воздействие на человека. Поражающая радиоактивность потока альфа-частиц не слишком велика.

Принято считать, что спектр подобного излучения неопасен, но не стоит забывать про радиоактивность. Проникновение массивных частиц в организм человека вместе с водой, едой или же сквозь кожный покров, имеется риск серьезного отравления. Осложнение возникает по причине мощного ионизирующего воздействия, формирования кислорода, окислителя, водорода свободного. За счет того, радиоактивность оказывает воздействие на мозг, скапливаясь в нем, наблюдается появления множества патологий, которые активно снижают адаптационные, защитные функции организма.

Не смотря не радиоактивность, альфа-частицы признаны наиболее безопасными, так как после внешнего облучения не требуются защитные средства. Опасность поджидает от внутреннего облучения, когда радиоактивность частиц действует более хитро. Для предотвращения неприятностей, достаточно не допустить попадание в организм радионуклидов, используя индивидуальную защиту:

  • одежда, сделанная из специального материала;
  • если кожа чувствительная, можно пользоваться кремом, дерматологической пастой;
  • для глаз подойдут щитки из специального оргстекла.

В перечень рекомендаций входит информация о воздействии пищевых продуктов на выведение, нейтрализацию радионуклидов в организме. Такая способность имеется у продуктов, которые богаты витамином С, В. Отлично помогают перепелиные яйца, но если доза облучения не слишком большая. Они считаются богатым источником аминокислот, витаминов и микроэлементов. Из растений, которые способны помочь, можно выделить топинамбур.

Сфера применения излучения

Кроме защиты от альфа-частиц, была разработана особая терапия с их использованием. Лечебный сеанс позволяет пользоваться изотопами, которые были получены при излучении, а именно – торон, радон, которые обладают небольшими сроками жизни, быстро ликвидируются из организма.

Примеры применения альфа-излучения в медицине:

  • пероральное применение воды радоновой;
  • прием ванны радоновой;
  • дыхательная процедура воздухом с радонами.

Доктора абсолютно и твердо уверены, что влияние альфа-частиц можно фокусировать, уничтожая раковые клетки. Подобная целебная терапия способна оказать седативное, обезболивающее, противовоспалительное влияние на человека. Рекомендовано к лечению опорно-двигательного аппарата, сердечно-сосудистых и гинекологических недугов. Процедура проводится строго под контролем лечащего врача и специально обученного человека.

В процессе распада атомов тяжелых химических элементов происходит излучение положительно заряженных α-частиц.

Эти частицы имеют массу равную 4 и заряд +2. Структура α-частиц аналогична строению ядер гелия 4 (4 Не). Она состоит из 2 нейронов и 2 протонов.

Тяжелые частицы оказывают интенсивное ионизирующее воздействие на среды, при котором образуется около 40000 пар ионов на каждый 1 см пробега.

При этом теряется значительная часть энергии и снижается проникающая способность.

Источником α-излучения являются элементы с большим порядковым номером (более 82) и малыми энергиями связей внутри молекулы.

Длина пробега α-частицы (расстояние от источника радиоактивного излучения до поглощающей среды) в воздухе составляет от 2 до 10 см, а в биологических тканях – несколько микрон.

Поэтому облучение α-частицами внешней поверхности тела не наносит выраженных повреждений, так как даже слой ороговевших клеток эпидермиса способен задержать проникновение частиц к живым клеткам тела.

Опасность для живых организмов представляют частицы радиоактивного вещества, испускающие α-излучение, попавшие внутрь организма с воздухом, жидкостью или зараженными продуктами питания. В биологических тканях частицы образуют около 40 тыс. пар ионов на 1-2 микрон длины пробега. Столь значительная степень ионизации представляет серьезную опасность для здоровья.

Низкая проникающая способность характерна для α- частиц с энергией менее 15 МэВ. Полученные на ускорителе α-частицы обладают гораздо большей энергией и способны вызвать значительное повреждение кожного покрова даже при минимальной дозе облучения.

Основным методом защиты от α–частиц является создание достаточного для их задержания барьера:

  • слоя воздуха между телом и источником излучения – достаточно удалиться на 15-20 см;
  • искусственного препятствия в виде защитного костюма, резиновых перчаток и изолирующих очков.

Но так как главную опасность представляет внутреннее облучение, то следует избегать попадания α–частиц внутрь дыхательной системы и желудочно-кишечного тракта. Для изолирования органов дыхания достаточно использовать респиратор.

Большую опасность для внутреннего α-облучения представляют изотопы плутония и америция, так как они обладают высокой α-активностью. Чтобы предупредить облучение α-частицами нельзя употреблять воду и продукты питания, зараженные изотопами тяжелых элементов.

Для исключения попадания радиоактивной пыли в органы дыхания проводят ежедневную влажную уборку помещения, а раз в месяц – с помощью мыльной воды моют все поверхности – двери, окна, полы, стены. Для очистки воды от радиоактивных веществ, обладающих α-активностью, используют методы:

  • нанофильтрации;
  • ионного обмена;
  • обратного осмоса.

Источником α-частиц является газ радон, выделяющийся через геологические разломы в воздух, воду, из строительных материалов, содержащих радиоактивное семейство уран-радий. Радон оказывает повреждающее действие при вдыхании газа. Продукты распада вызывают микроожог ткани легких и приводят к раковым заболеваниям.

Для защиты от воздействия радона необходим мониторинг его содержания в помещениях. Для этого используют специальные измерительные приборы. При превышении допустимого уровня используют следующие методы защиты:

  • проветривание жилых помещений;
  • изоляцию подвального помещения с помощью листов пластика;
  • оборудование вентиляции, выводящей радон наружу.

Наиболее действенным методом защиты жилых помещений от проникновения радона является изоляция подвальных помещений и отведение из них газа с помощью системы вентиляции с положительным давлением. Для очистки воды от растворенного в ней радона достаточно ее прокипятить.

Химические методы защиты

Организм человека на ¾ состоит из воды. В результате воздействия α- частиц на биологические жидкости происходит процесс разложения (радиолиз) воды с образованием свободных радикалов.

Отрицательные радикалы активно вступают в биохимические реакции, нарушая процессы биосинтеза и энергообмена, разрушая органеллы клеток из которых в цитоплазму высвобождаются протеолитические ферменты. Эти процессы обусловлены дезактивацией ферментов, имеющих в своем составе группу-SH (сульфгидрильную).

В середине XX века ученые приступили к разработке препаратов, защищающих организм от облучения. Наиболее эффективными оказались некоторые аминотиолы, например, Цистамин и Цистеамин. Они обладают выраженной антигемолитической активностью и, по сути, являются источником SH -групп и играют роль восстановителей в окислительных процессах, связывают свободные радикалы, нейтрализуют возбужденные молекулы, образующиеся в тканях организма под действием α-излучения, придают устойчивость некоторым ферментам.

Раньше в комплект антирадиационной аптечки входил препарат-радиопротектор Цистамин. В настоящее время он заменен более эффективным Б-190 (Индралин). Препарат имеет меньшую токсичность и оказывает радиопротекторное действие в течение 1 часа.

Повторный прием препарата возможен через 1 час после первого применения. Также радиопротекторными свойствами обладает Нафтизин, который выпускают в виде 0,1% раствора для внутримышечных инъекций.

Продукты с радиопротекторными свойствами

Некоторые продукты оказывают радиопротекторное действие. Употребление продуктов, содержащих витамины С и группы В, селен, снизят проникновение радиоактивных ионов в системный кровоток и накопление их в органах.

Эти вещества содержат:

  • орехи;
  • пшеница и изделия из пшеничной муки;
  • редис;
  • морская капуста.

Некоторые лекарственные растения тоже препятствуют α-облучению:

  • женьшень;
  • заманиха;
  • левзея;
  • элеутерококк;
  • медуница.

Для частичного выведения из ЖКТ радиоактивных изотопов используют энтеросорбенты – активированный уголь, Смекту, Энтеросгель, Полисорб МП, Полифепан и Лиферан.

Человек не может почувствовать радиацию, для выявления α-излучения используют счетчик Гейгера. Период полураспада α-радиоактивных элементов составляет от нескольких миллисекунд до нескольких миллиардов лет, поэтому защита временем в этом случае маловероятна.

В настоящее время не существует эффективных методов защиты от внутреннего α-излучения, кроме барьерных средств защиты и исключения риска заражения через продукты или воду. Но ученые продолжают работать над созданием эффективных средств защиты.

>> Альфа-, бета- и гамма-излучения

§ 99 АЛЬФА-, БЕТА- И ГАММА-ИЗЛУЧЕНИЯ

После открытия радиоактивных элементов началось исследование физической природы их излучения. Кроме Беккереля и супругов Кюри, этим занялся Резерфорд.

Классический опыт, позволивший обнаружить сложный состав радиоактивного излучения, состоял в следующем. Препарат радия помещали на дно узкого канала в куске свинца. Против канала находилась фотопластинка. На выходившее из канала излучение действовало сильное магнитное поле , линии индукции которого перпендикулярны лучу (рис. 13.6). Вся установка размещалась в вакууме.

В отсутствие магнитного поля на фотопластинке после проявления обнаруживалось одно темное пятно точно напротив канала. В магнитном поле пучок распадался на три пучка. Две составляющие первичного потока отклонялись в противоположные стороны. Это указывало на наличие у этих излучений электрических зарядов противоположных знаков. При этом отрицательный компонент излучения отклонялся магнитным полем гораздо сильнее, чем положительный. Третья составляющая совсем не отклонялась магнитным полем. Положительно заряженный компонент получил название альфа-лучей, отрицательно заряженный - бета-лучей и нейтральный - гамма-лучей (-лучи, -лучи, -лучи).

Эти три вида излучения очень сильно различаются по проникающей способности, т. е. по тому, насколько интенсивно они поглощаются различными веществами. Наименьшей проникающей способностью обладают -лучи. Слой бумаги толщиной около 0,1 мм для них уже непрозрачен. Если прикрыть отверстие в свинцовой пластинке листочком бумаги, то на фотопластинке не обнаружится пятна, соответствующего -излучению.

Гораздо меньше поглощаются при прохождении через вещество -лучи . Алюминиевая пластинка полностью их задерживает только при толщине в несколько миллиметров. Наибольшей проникающей способностью обладают .-лучи.

Интенсивность поглощения -лучей усиливается с увеличением атомного номера вещества-поглотителя. Но и слой свинца толщиной в 1 см не является для них непреодолимой преградой. При прохождении -лучей через такой слой свинца их интенсивность ослабевает лишь вдвое. Физическая природа -, - и -лучей, очевидно, различна.

Гамма-лучи. По своим свойствам -лучи очень сильно напоминают рентгеновские , но только их проникающая способность гораздо больше, чем у рентгеновских лучей. Это наводило на мысль, что -лучи представляют собой электромагнитные волны. Все сомнения в этом отпали после того, как была обнаружена дифракция -лучей на кристаллах и измерена их длина волны. Она оказалась очень малой - от 10 -8 до 10 -11 см.

На шкале электромагнитных волн -лучи непосредственно следуют за рентгеновскими. Скорость распространения у -лучей такая же, как у всех электромагнитных волн, - около 300 000 км/с.

Бета-лучи. С самого начала - и -лучи рассматривались как потоки заряженных частиц. Проще всего было экспериментировать c -лучами, так как они сильнее отклоняются как в магнитном, так и в электрическом поле.

Основная задача экспериментаторов состояла в определении заряда и массы частиц. При исследовании отклонения -частиц в электрических и магнитных полях было установлено, что они представляют собой не что иное, как электроны, движущиеся со скоростями, очень близкими к скорости света. Существенно, что скорости -частиц, испущенных каким-либо радиоактивным элементом, неодинаковы. Встречаются частицы с самыми различными скоростями. Это и приводит к расширению пучка -частиц в магнитном поле (см. рис. 13.6).

Альфа-частицы. Труднее было выяснить природу -частиц, так как они слабее отклоняются магнитным и электрическим полями. Окончательно эту задачу удалось решить Резерфорду . Он измерил отношение заряда q частицы к ее массе m по отклонению в магнитном поле. Оно оказалось примерно в 2 раза меньше, чем у протона - ядра атома водорода. Заряд протона равен элементарному, а его масса очень близка к атомной единице массы 1 . Следовательно, у -частицы на один элементарный заряд приходится масса, равная двум атомным единицам массы.

Но заряд -частицы и ее масса оставались, тем не менее, неизвестными. Следовало измерить либо заряд, либо массу -частицы. С появлением счетчика Гейгера стало возможным проще и точнее измерить заряд. Сквозь очень тонкое окошко - частицы могут проникать внутрь счетчика и регистрироваться им.

Резерфорд поместил на пути -частиц счетчик Гейгера, который измерял число чacтиц, испускавшихся радиоактивным препаратом за определенное время. Затем он поставил на место счетчика металлический цилиндp, соединенный с чувствительным электрометром (рис. 13.7). Электрометром Резерфорд измерял заряд - частиц испущенных источником внутрь цилиндра за такое же время (радиоактивность многих веществ почти не меняется со временем). Зная суммарный заряд -частиц и их число, Гезерфод определил отношение этих величин, т. е. заряд одной -частицы. Этот заряд оказался равным двум элементарным.

Таким образом, он устаиовил, что у -частицы на каждый из двух элементарных зарядов приходится две атомные единицы массы. Следовательно, на два элементарных заряда приходится четыре атомные единицы массы. Такой же заряд и такую же относительную атомную массу имеет ядро гелия. Из этого следует, что - часчица - это ядро атома гелия.

Не довольствуясь достигнутым результатом, Резерфорд затем еще прямыми опытами доказал, что при радиоактивном -распаде образуется именно гелий. Собирая -частицы внутри специального резервуара на протяжении нескольких дней, он с помощью спектрального анализа убедился в том, что в сосуде накапливастся гелий (каждая -частица захватывала два электрона и превращалась в атом гелия).

1 Атомная единица массы (а. с. м.) рапиа 1/12 массы атома углерода ; 1 а. е. м. 1,66057 10 -27 кг.

При радиоактивном распаде возникают -лучи (ядра атома гелия), -лучи (электроны) и -лучи (коротковолновое электромагнитное излучение).

Почему выяснить природу -лучей оказалось гораздо сложнее, чем в случае -лучей?

Мякишев Г. Я., Физика. 11 класс: учеб. для общеобразоват. учреждений: базовый и профил. уровни / Г. Я. Мякишев, Б. В. Буховцев, В. М. Чаругин; под ред. В. И. Николаева, Н. А. Парфентьевой. - 17-е изд., перераб. и доп. - М. : Просвещение, 2008. - 399 с: ил.

Планирование уроков по физике онлайн , задачи и ответы по классам, домашнее задание по физике 11 класса скачать

Содержание урока конспект урока опорный каркас презентация урока акселеративные методы интерактивные технологии Практика задачи и упражнения самопроверка практикумы, тренинги, кейсы, квесты домашние задания дискуссионные вопросы риторические вопросы от учеников Иллюстрации аудио-, видеоклипы и мультимедиа фотографии, картинки графики, таблицы, схемы юмор, анекдоты, приколы, комиксы притчи, поговорки, кроссворды, цитаты Дополнения рефераты статьи фишки для любознательных шпаргалки учебники основные и дополнительные словарь терминов прочие Совершенствование учебников и уроков исправление ошибок в учебнике обновление фрагмента в учебнике элементы новаторства на уроке замена устаревших знаний новыми Только для учителей идеальные уроки календарный план на год методические рекомендации программы обсуждения Интегрированные уроки

Самое обсуждаемое
Опасности альфа-излучения Опасности альфа-излучения
Современный спутниковый интернет Современный спутниковый интернет
Как с Android раздавать интернет на компьютер или ноутбук (делаем из смартфона модем) Usb раздать интернет из компьютера по wifi Как с Android раздавать интернет на компьютер или ноутбук (делаем из смартфона модем) Usb раздать интернет из компьютера по wifi


top