Клонирование динозавров, почему нельзя клонировать динозавра. Можно ли клонировать динозавров? Смогут ли ученые создать динозавра

Клонирование динозавров, почему нельзя клонировать динозавра. Можно ли клонировать динозавров? Смогут ли ученые создать динозавра

Что касается органического материала, можно ли извлечь из него ДНК динозавра? Не совсем. Палеонтологи постоянно спорят по поводу пригодности органики, но ДНК так и не извлекли (и, видимо, никогда не смогут).

Возьмем, к примеру, тираннозавра (который рекс). В 2005 году ученые при помощи слабой кислоты извлекли слабые и податливые ткани из останков, в том числе костные клетки, красные кровяные клетки и кровеносные сосуды. Однако последующие изучения показали, что находка была обыкновенной случайностью. серьезно погорячились. Дополнительный анализ с помощью радиоуглеродной и сканирующей электронной микроскопии показал, что материал для исследования был не тканью динозавров, а бактериальными биопленками - колониями бактерий, связанных между собой полисахаридами, протеинами и ДНК. Выглядят эти две вещи весьма похоже, но имеют больше общего с зубным налетом, нежели с клетками динозавров.

В любом случае эти находки были весьма интересными. Возможно, самое интересное мы еще не нашли. Ученые усовершенствовали свои техники и, когда подобрались к гнезду люфенгозавров, подсобрались. Захватывает? Абсолютно. Органика? Да. ДНК? Нет.

Но что, если это возможно?

Надежда есть

За последние десять лет достижения в области стволовых клеток, реанимации древней ДНК и восстановления генома приблизили понятие «вымирание наоборот» ближе к реальности. Однако насколько близко и что это может означать для самых древних животных, пока неясно.

Используя замороженные клетки, в 2003 году ученые успешно клонировали пиренейского козерога, известного как букардо, но он умер спустя минуту. В течение многих лет австралийские исследователи пытались вернуть к жизни южный вид лягушек, рожавших ртом, последняя из которых умерла несколько десятилетий назад, но их затея до сих пор не увенчалась успехом.

Вот так, спотыкаясь и чертыхаясь на каждом шагу, ученые вселяют в нас надежду на более амбициозные реанимации: мамонтов, странствующих голубей и юконских лошадей, вымерших еще 70 тысяч лет назад. Такой возраст поначалу может вас смутить, но только представьте: это одна десятая часть процента от того времени, когда умер последний динозавр.

Даже если ДНК динозавра будет такой же по сроку, как вчерашний йогурт, многочисленные этические и практические соображения оставят среди сторонников идеи воскрешения динозавров только самых безумных ученых. Как вообще мы будем регулировать эти процессы? Кто будет этим заниматься? Как воскрешение динозавров скажется на Законе об исчезающих видах? Что, кроме боли и страданий, принесут проваленные попытки? Вдруг мы реанимируем смертельные болезни? Что, если инвазивные виды будут расти на стероидах?

Потенциал роста, конечно, есть. Как репрезентация волков в Йеллоустонском парке, «откат» недавно вымерших видов смог бы восстановить равновесие в нарушенных экосистемах. Некоторые полагают, что человечество в долгу у животных, которых оно уничтожило.

Проблема ДНК, пока что, - вопрос сугубо академический. Понятно, что воскресить какого-нибудь замороженного мамонтенка из замороженной клетки, возможно, и не вызовет особых подозрений, но что делать с динозаврами? Обнаружение гнезда люфенгозавров, возможно, сильнее всего приблизило нас к «Парку Юрского периода».

В качестве альтернативы можно попытаться скрестить вымершее животное с ныне существующим. В 1945 году некоторые немецкие селекционеры утверждали, что смогли реанимировать тура, давно вымершего предка современного рогатого скота, но ученые до сих пор не верят в сие событие.

Генная инженерия — одна из самых революционных наук. До сих пор учёные дискутируют о возможном её запрете. А пока они спорят, в научных лабораториях успешно идёт процесс клонирования. Всем интересно знать, как обстоят дела с клонированием динозавров.

Есть сомнительная теория, по которой ДНК динозавра можно выделить из крови укусившей его самки комара. Это насекомое якобы сохранилось в янтаре. Такой клон динозавра успешно появился в фильме «Парк юрского периода».

Конечно, маловероятно найти такого комара, секунду назад укусившего ящера и тут же попавшего в каплю сосновой смолы. Под большим сомнением и тот факт, что ДНК динозавра в чистом виде могло бы сохраниться в янтаре. Сама же гипотеза ведёт только к одному выводу — ДНК надо искать или каким-то образом воссоздавать, но как именно, пока сложно сказать.


Практически, все Учёные умы очень скептически относятся к возможности находки ДНК динозавра. Они приводят следующие основания: 1.В течении 500 000 лет может разрушиться любая структура ДНК, если она находится вне зоны воздействия низких температур. 2.ещё никому не удалось найти цельную ДНК, всегда это короткие кусочки цепочки, которые нельзя соединить. 3.Самое сложное отсеять кусочки нужного нам генетического материала от от чужих ДНК, которые были занесены случайно позже или просто относятся к бактериям эпохи жизни данного динозавра.

Но когда человек имеет мечту, то «сказка делается былью». И невозможное становится возможным.

2010 год можно назвать годом прорыва в истории воссоздания ДНК. 50 -75 тысяч лет назад на Земле вместе с неандертальцами проживали вымершие древние люди — денисовцы. Палеонтологам удалось найти останки денисовской девочки. Специалисты смогли расшифровать генетический код ребёнка, так как перед этим было разработано ноу-хау

— реконструкция обломков молекулы ДНК, состоящей из одной цепочки. Это открытие стало базовым для дальнейших разгадок эволюционного развития на Земле.

2013 год. ещё один прорыв! Найдены в вечной мерзлоте останки древней лошади. Им 550 — 780 тысяч лет. Учёным удаётся прочитать и этот геном.

Дальше ещё одна сенсация — специалистам удаётся расшифровать митохондриальную ДНК гейдельбергского человека. Этот вид неандертальца жил приблизительно 400 тысяч лет назад. Параллельно с этим удачно проводится работа по генной структуре останков медведя, жившего в это же время. Самое удивительно, что останки и человека и медведя были найдены не в вечной мерзлоте, а в более теплом климате. О чем это говорит? Можно клонировать древних животных не только из замороженных останков, а расширить ареал поисков обломков ДНК уже по новой методике.


Эта методика, как все гениальное, проста. Чтобы очистить нужную ДНК от наличия чужеродной, Учёные создали так называемый шаблон ДНК: брались последовательности генов 45 нуклеотидов (более длинные цепочки вряд ли сохраняются) с уже имеющимися мутациями, происходившими после гибели особи (после смерти клетки появляются определённые замены нуклеотидов). Затем, сделав анализ данного генетического кусочного материала, находили самое близкое ДНК, которое и давало возможность выстроить правильную цепочку генов. Это напоминает работу над паззлами — общая картинка есть, нужно только правильна собрать её по маленьким кусочкам. Геном денисовского человека лучше всего подошёл для этого.

Этот метод работает только тогда, когда есть следующая база:

1.удачный шаблон для восстановления генома

2.достаточное количество обломков цепи ДНК.

Мы получаем новые знания и новый шаблон с каждой новой расшифровкой. И углубляемся в изучение более точных исторических событий. Но пока все эти открытия ограничивает отрезок не более 800 000 лет. Так как же быть с динозаврами, которые проживали на Земле от 225 до 65 миллионов лет назад. За такой длительный промежуток времени не сохранилось бы ни одной целой молекулы ДНК, но и тут наука не останавливается на одном месте.

В Чернышевском районе учёными были обнаружены фрагменты окаменелой кожи динозавра, проживавшего в Юрском Периоде. Учёные поставили вопрос о реальном клонировании динозавров. Десятки информационных агенств проявили интерес к Забайкалью в связи с этой находкой. В институт приехали зарубежные и российские Учёные, которые признали, что подобного они ещё не встречали в своей жизни.

Клонирование, безусловно, ещё не поставлено на конвейер, а эксперименты пока ведутся в частных или прикафедральных университетских лабораториях. Российские исследователи сейчас вплотную заняты клонированием мамонта. Сам генетический материал мамонта добыть не очень сложно. Вспомним мамонтенка Диму, которого нашли цельной тушкой. Собственно, мамонты жили всего несколько тысяч лет назад, поэтому их замершие останки уже не раз находили в Сибири. Остались свидетельства, что ещё в 19 веке сибирские охотники кормили собак мамонтятиной. Конечно, сделать клона мамонта, из целой сохранившейся цепочки ДНК и белка хорошего качества не представляет больших сложностей для специалистов.

Намного сложнее клонировать динозавра. По словам доктора геолого-минералогических наук Софьи Синицы, период распада ДНК зависит от условий нахождения останков и составляет 500 тысяч лет. А мы должны учитывать, что динозавры вымерли приблизительно 65 миллионов лет назад. А ведь многие из них жили за 150 миллионовлет до нашей эры. НУ, И КАК ЖЕ НАЙТИ ДНК ДИНОЗАВРА? Сроки сохранности ДНК ставят исследователей в тупик. Ведь органическая ткань за миллионы лет трансформируется в минералы. В породах, которые можно подвергнуть анализу, её фактически не существует. Особый акцент Софья Синица делает на том, что с кожей динозавра, в которой могла бы сохраниться органика, также ничего не выходит и поэтому клонированием динозавров придётся заняться только после успешного клонирования генетиками мамонта. Учёная обещает, что для того, чтобы найти исходный материал для клонирования ящеров она «перекопает всю Сибирь».

Вы прекрасно помните из школьной программы, что ДНК играет функцию передачи наследственной информации. Если кто-то из исследователей сможет найти одну единственную полностью сохранившуюся клетку с полным набором молекул ДНК, то дальнейшее клонирование точной копии просто дело техники. Например, берётся яйцо современного комодского дракона, уничтожается изначальная ДНК и вносятся в яйцо молекулы ДНК любого вида динозавра. Теперь можно положить яйцо в специнкубатор и ждать рождения маленького динозаврика.

С тех пор, как палеонтолог университета Северной Каролины Мэри Швейцер (Mary Schweitzer) обнаружила в окаменелостях динозавров их мягкие ткан и, перед современной наукой о древних существах встал вопрос: сможем ли мы когда-нибудь найти подлинную ДНК динозавров ?

И если да, то не удастся ли нам с ее помощью воссоздать этих удивительных животных?

Дать однозначные ответы на эти вопросы не так-то просто, но доктор Швейцер все же согласилась помочь нам понять, что мы знаем сегодня о генетическом материале динозавров и на что можем рассчитывать в будущем.

Можем ли мы получить ДНК из окаменелостей?

Этот вопрос следует понимать как "можем ли мы получить динозавровую ДНК"? Кости состоят из минерала гидроксиапатита, который имеет настолько высокое сродство с ДНК и многими белками, что активно используется сегодня в лабораториях для очистки их молекул. Кости динозавров 65 млн лет пролежали в земле, и достаточно велика вероятность, что если начать активно искать в них молекулы ДНК, то вполне можно и найти.

Просто потому, что некоторые биомолекулы могут приклеиться к этому минералу, как к липучке. Проблема, однако, будет заключаться не столько в том, чтобы просто найти ДНК в костях динозавров, сколько в том, чтобы доказать, что эти молекулы принадлежат именно динозаврам, а не появились из каких-то других возможных источников.

Сможем ли мы когда-нибудь восстановить подлинную ДНК из кости динозавра? Научный ответ - да. Все возможно, пока не доказано обратное. Способны ли мы сейчас доказать невозможность извлечения динозавровой ДНК? Нет, не способны. Есть ли у нас уже подлинная молекула с генами динозавра? Нет, этот вопрос пока остается открытым.

Как долго ДНК может сохраняться в геологической летописи и как доказать, что она принадлежит именно динозавру, а не попала в образец уже в лаборатории вместе с каким-нибудь загрязнителем?

Многие ученые считают, что у ДНК довольно короткий срок годности. По их мнению, эти молекулы вряд ли смогут сохраниться дольше, чем миллион лет, и уж конечно, не более пяти-шести миллионов лет в самом лучшем случае. Такая позиция лишает нас надежды увидеть ДНК существ, живших свыше 65 млн лет назад. Но откуда взялись эти цифры?

Занимавшиеся этой проблемой ученые помещали молекулы ДНК в горячую кислоту и засекали время, которое необходимо для их распада. Высокие температура и кислотность использовались в качестве "заменителей" длительных временных промежутков. Согласно выводам исследователей, ДНК распадается довольно быстро.

Результаты одной из таких работ, сопоставлявшей количество молекул ДНК, успешно извлекаемых из образцов разного возраста - от нескольких сотен до 8000 лет - показали, что с возрастом количество извлекаемых молекул снижается.

Ученые даже смогли смоделировать "скорость распада" и предсказали, хотя и не проверили это утверждение, что обнаружить ДНК в кости мелового возраста крайне маловероятно. Как ни странно, но это же исследование показало, что возраст сам по себе не может объяснить распад или сохранение ДНК.

С другой стороны, у нас есть четыре независимых линии доказательств того, что молекулы, химически схожие с ДНК, могут локализовываться в клетках наших собственных костей, и это хорошо согласуется с тем, чтобы ожидать таких находок в костях динозавров.

Итак, если мы выделим ДНК из костей, принадлежащих динозаврам, как нам убедиться, что это не результат позднейшего загрязнения?

Идея о том, что ДНК может сохраняться так долго, действительно имеет довольно мало шансов на успех, поэтому любое заявление о находке или восстановлении настоящей динозавровой ДНК должно соответствовать самым строгим критериям.

Мы предлагаем такие:

1. Последовательность ДНК, выделенная из кости, должна соответствовать той, что можно было бы ожидать, основываясь на других данных. Сегодня известно более 300 признаков, связывающих динозавров с птицами, и убедительно доказывающих, что птицы произошли от динозавров-теропод.

Поэтому последовательности ДНК динозавров, полученные из их костей, должны быть больше похожи на генетический материал птиц, чем на ДНК крокодилов, при этом отличаясь и от тех, и от других. Они также будут отличаться и от любых ДНК, происходящих из современных источников.

2. Если динозавровые ДНК будут настоящими, то они, очевидно, окажутся сильно фрагментированы, и их будет сложно анализировать нашими нынешними методами, разработанными для секвенирования здоровой и счастливой современной ДНК.

Если "ДНК тирекса" окажется состоящей из длинных цепочек, относительно легко поддающихся расшифровке, то скорее всего, мы имеем дело с загрязнением, а не подлинной ДНК динозавра.

3. Молекула ДНК считается более хрупкой по сравнению с другими химическим соединениями. Поэтому если в материале присутствуют аутентичные ДНК, то там должны быть и другие, более прочные молекулы, например, коллагена.

При этом связь с птицами и крокодилами должна прослеживаться и у молекул этих более устойчивых соединений. Кроме того, в ископаемом материале могут обнаружиться, например, липиды, составляющие клеточные мембраны. Липиды более устойчивы, чем в среднем белки или те же молекулы ДНК.

4. Если белки и ДНК успешно сохранились с мезозойских времен, их связь с динозаврами должна подтверждаться не только секвенированием, но и другими методами научного исследования. Например, связывание белков со специфическими антителами докажет, что это действительно белки из мягких тканей, а не загрязнение из внешних горных пород.

В наших исследованиях мы смогли успешно локализовать вещество, химически подобное ДНК, внутри клеток кости T. Rex, используя как методы, специфические для ДНК, так и антитела к белкам, ассоциированным с ДНК позвоночных.

5. Наконец, и это, вероятно, самое главное - для всех этапов любого исследования следует применять надлежащий контроль. Наряду с образцами, из которых мы надеемся выделить ДНК, необходимо исследовать и вмещающие породы, а также все химические соединения, используемые в лаборатории. Если и в них также обнаружатся последовательности, представляющие для нас интерес, то скорее всего, это просто загрязняющие вещества.

Так сможем ли мы когда-нибудь клонировать динозавра?

В каком-то смысле. Клонирование, как его обычно проводят в лаборатории, представляет собой вставку известного фрагмента ДНК в бактериальные плазмиды.

Этот фрагмент реплицируется всякий раз, когда делится клетка, что приводит к появлению многих копий идентичных ДНК.

Палеонтолог университета Северной Каролины Мэри Швейцер

Другой метод клонирования предполагает помещение целого комплекта ДНК в жизнеспособные клетки, из которых заранее удален их собственный ядерный материал. Затем такая клетка помещается в организм хозяина, и донорская ДНК начинает управлять формированием и развитием потомства, полностью идентичного донору.

Знаменитая овечка Долли является примером использования как раз данного метода клонирования. Когда люди говорят о "клонировании динозавра", они обычно имеют в виду что-то вроде этого. Однако этот процесс невероятно сложен, и, не смотря на ненаучный характер такого предположения, вероятность того, что мы когда-нибудь сможем преодолеть все нестыковки между фрагментами ДНК из костей динозавров и произвести жизнеспособное потомство, настолько мала, что я отношу ее к разряду "не представляется возможным".

Но только потому, что вероятность создания настоящего Парка юрского периода мизерна, нельзя говорить, будто невозможно восстановить саму исходную ДНК динозавра или другие молекулы из древних останков. На самом деле эти древние молекулы могли бы многое нам рассказать. Ведь все эволюционные изменения должны сперва произойти в генах и отразиться на молекулах ДНК.

Мы также можем многое узнать о долговечности молекул в естественных условиях непосредственно, а не благодаря лабораторным экспериментам. И, наконец, восстановление молекул из образцов ископаемых существ, в том числе динозавров, дает нам важную информацию о происхождении и распространении различных эволюционных инноваций, например, перьев.

Нам предстоит еще многому научиться в молекулярном анализе окаменелостей, и мы должны действовать с максимальной осторожностью, никогда не переоценивая данные, которые получаем. Но мы можем извлечь из молекул, сохранившихся в окаменелостях, столько всего интересного, что это безусловно заслуживает наших усилий.

В последнее время в СМИ все чаще появляются сообщения о том, что ученые уже без всякого труда могут воскресить вымерших 65 миллионов лет назад динозавров. Однако в реальности все не так просто, как представляется тем, кто не знаком со всеми тонкостями данных исследований. Потому что на самом деле воскресить динозавров нельзя. Но создать заново — можно.

"Воскресить" вымершее животное можно лишь двумя путями. Первый из них практиковался еще в ХХ веке. Суть его состоит в том, что если дикий предок каких-нибудь домашних животных вымирает, то можно добиться восстановления его внешнего облика путем избирательного скрещивания между собой представителей самых примитивных пород, происходящих от этого предка. Именно таким способом еще в 70-х годах прошлого столетия немецким биологам удалось "воскресить" вымершего предка (точнее говоря, одного из предков) современных лошадей — тарпана (Equus ferus ferus ).

Скрещивая представителей нескольких пород, в чьих клетках были гены тарпанов (которых истребили в начале ХХ века, то есть не так-то и давно), ученым удалось создать существо, внешний облик которого абсолютно точно соответствовал таковому предковой формы. Впоследствии эти тарпаны были выпущены на волю, и сейчас в Германии и Польше пасется несколько табунов данных животных. Интересно, что за несколько поколений их внешний вид не претерпел существенных изменений — что говорит о том, что "воскрешение" прошло удачно, и данные животные, видимо, действительно содержат большинство генов дикого предка лошади. Однако проверить это невозможно, поскольку генетического банка данных самих тарпанов не сохранилось.

Однако к динозаврам подобный подход не применим — ведь никаких домашних пород этих рептилий нет. Есть, правда, потомки этой группы, то есть птицы и сохранился отряд рептилий, очень близкий к предковой форме "ужасных ящеров" — крокодилы, однако скрещивание представителей этих, весьма далеких друг от друга в эволюционном плане таксонов ничего не даст (да оно и чисто технически невозможно — слишком велика разница в геномах).

Другой способ "воскрешения" основан на создании гибридного эмбриона (подробнее о нем читайте в статье "Чем опасны гибридные эмбрионы? ") . Если ДНК вымершего животного сохранилась в полном объеме, то ее можно пересадить в ядро зародышевой клетки представителя наиболее близкого вида, и, таким образом, вырастить требуемый организм. С птицами и рептилиями это просто — у них все развитие проходит в яйце, а вот зародыша млекопитающего на определенной стадии нужно трансплантировать в тело суррогатной мамы, в роли которой выступает самка того же, наиболее близкого вида (например, в случае "воскрешения" мамонта это будет азиатская слониха). Таким способом биологи планируют "воскресить" мамонта, шерстистого носорога, большерогого оленя и некоторых других доисторических гигантов, а также истребленного в ХХ веке сумчатого волка (подробнее о том, что это такое, читайте в статье "Волки боялись в лес выходить... "), ДНК которых прекрасно сохранилась и, что называется, ждет своего часа.

Однако с динозаврами и этот номер не пройдет — у ученых не имеется ни одного образца ДНК этих гигантов. Дело в том, что последние представители этой группы вымерли около 65 млн. лет тому назад, а за это время все кости этих гигантов успели, что называется, перекристаллизоваться, то есть вся органика в них была замещена на неорганические вещества, поэтому по сути сейчас они представляют собой каменные глыбы, чем-то похожие на части тела динозавров. При таких условиях ДНК сохраниться не может. Кроме того, в мезозойскую эру не было покровных оледенений и вечной мерзлоты, поэтому найти труп "ужасного ящера", который пролежал бы в замороженном состоянии миллионы лет (как это часто бывало с мамонтами), не представляется возможным.

Так что, как видите, "воскресить" динозавров нельзя. Однако ученые убеждены, что их можно создать заново. Правда, это будут уже совсем другие динозавры, не имеющие внешне ничего общего с реально существовавшими гигантами. Но в то же время вполне себе полноценные.

Данная методика основана на том, что гены раннего развития (гомеозисные), которые контролируют формирование первых стадий зародыша — структуры достаточно консервативные, и часто практически в полном объеме сохраняются у потомков. Именно поэтому эмбрион человека на ранних стадиях похож на рыбу, потом на амфибию и только уже после приобретает черты, специфические для млекопитающих. Поэтому и у птиц, конечно же, остались гомеозисные гены динозавров. В процессе формирования эмбриона они даже работают, но очень короткое время — потом специальные белки их "выключают" для того, чтобы запустилась работа гомеозисных генов, специфичных только для птиц.

Но что если каким-то образом предотвратить эти выключения динозавровых генов? Ученые из из Университета Макгилла (США) под руководством Ханса Ларссона обнаружили, что на раннем этапе развития куриного эмбриона у зародыша есть хвост, похожий на рептильный. Но дальше в определенный момент работа генов, отвечающих за его формирование, заканчивается, и хвост исчезает. Доктор Ларссон и его коллеги несколько раз пытались блокировать деятельность белков, выключающих хвостовые гены. В конце концов им удалось это сделать, однако "хвостатый" цыпленок вскоре погиб, так толком и не сформировавшись.

По другому пути пошли онтогенетики Джон Фэллон и Мэтт Харрис из Висконсинского университета (США) Они, экспериментируя с мутантными куриными эмбрионами, заметили что у некоторых из них есть странные выросты на челюстях зародыша. Данные "шишки" при ближайшем рассмотрении оказались саблевидными зубами, которые были идентичны зубам эмбрионов аллигаторов и, что самое интересное, некоторых мелких юрских динозавров.

Позже выяснилось, что эти мутанты обладали рецессивным геном, который в норме убивает плод до рождения. Однако в качестве побочного эффекта своей деятельности этот ген включает другой, являющийся гомеозисным геном динозавров, отвечающий за формирование зубов. Заинтересовавшись данным феноменом, Фэллон и Харрис создали вирус, который вел себя подобно рецессивному гену, но не был смертельным для эмбриона. Когда его вводили в нормальные зародыши, у тех начинали расти зубы, и никаких вредоносных побочных эффектов при этом не наблюдалось. Однако вылупиться "зубастику" так и не дали — по закону США гибридные эмбрионы должны быть уничтожены через 14 дней после завершения эксперимента.

Однако наибольших успехов удалось достичь доктору Архату Абжанову из Гарвардского университета. Он вычислил, какие из гомеозисных генов динозавров отвечают за формирование типичной рептильной морды вместо птичьего клюва. Ему удалось также определить белки, которые "отключают" эти гены.

После этого Абжанов добавил в клетки эмбриона другие белки, блокирующие деятельность "выключателей", в результате чего последние перестали работать. В итоге динозавровые гены уже отключить было некому, и у цыпленка выросла вполне симпатичная мордочка, чем-то напоминающая крокодилью. При этом сам эмбрион не погиб — он продолжал активно развиваться. Однако после 14 дней пришлось, к великой досаде Абжанова, умертвить и его.

Все эти исследования говорят о том, что создание динозавров из птиц принципиально возможно. Правда, биологи до сих пор не знают всех гомеозисных генов, оставшихся у птиц от динозавров, однако установить это не так то уж и сложно — ведь есть "контрольная" группа, то есть крокодилы. Не изучены так же до конца все тонкости их работы, однако и это — всего лишь вопрос времени. Так что не исключено, что в ближайшем будущем генетикам все-таки удастся превратить птицу в небольшого оперенного динозаврика из рода Maniraptora , вроде тех, которые существовали в середине юрского периода.

Сразу же следует заметить, что данное существо, конечно же, не будет представителем вида, уже обитавшего на нашей планете — ведь его геном будет включать птичью ДНК, отсутствовавшую у классических динозавров. Это будет представитель уже нового вида, созданного людьми, однако имеющего строение и физиологию, характерную для настоящих динозавров.

Ребята, мы вкладываем душу в сайт. Cпасибо за то,
что открываете эту красоту. Спасибо за вдохновение и мурашки.
Присоединяйтесь к нам в Facebook и ВКонтакте

Клонирование животных становится привычным делом. Постепенно ученые берутся за вымершие виды, мечтают вернуть к жизни мамонта и неандертальца. Но как насчет динозавров?

Фильм «Парк юрского периода» совершил революцию в мире науки: появились международные проекты для изучения останков и ДНК древних ящеров, в 4 раза выросло число палеонтологов. Всеми двигал интерес и желание дать окончательный ответ на вопрос о том, возможно ли клонировать тех, кто жил на Земле за 60 млн лет до появления человека.

С начала 2000-х годов мнения ученых разнятся. Скептики простились с детской мечтой: даже владея подобной технологией, люди вряд ли воспользуются ею для воссоздания динозавра, которому нет места в современном мире. Но есть и те, кто мыслит иначе.

сайт вкратце объясняет, как ученые надеются оживить древних ископаемых в ближайшем будущем и о каких результатах можно говорить уже сегодня. Посвящается всем, кто мечтал увидеть живого тираннозавра, - не отчаивайтесь, надежда еще есть.

2. Ищем неизвестные формы жизни на нашей планете, чтобы изучать механизмы и функции генов, создавать новые виды и воскрешать старые


Самое обсуждаемое
Размещение готовых решений в Битрикс Маркетплейс: как сэкономить время Размещение готовых решений в Битрикс Маркетплейс: как сэкономить время
Система управления корпоративной информацией Лицензии на серверное ПО Система управления корпоративной информацией Лицензии на серверное ПО
Медленная загрузка Windows Медленная загрузка Windows


top