Преобразователь напряжения с 12 вольт для ноутбука. Адаптер для питания ноутбука в машине

Преобразователь напряжения с 12 вольт для ноутбука. Адаптер для питания ноутбука в машине

Подходит например для питания ноутбука в авто, для преобразования 12-24, для подзарядки автомобильного аккумулятора от БП на 12V и т.п

Преобразователь добирался с левым треком типа UAххххYP и о-очень долго, 3 месяца, чуть диспут не открыл.
Продавец хорошо замотал устройство.

В комплекте были латунные стойки с гаечками и шайбочками, которые сразу прикрутил, чтобы не затерялись.

Монтаж довольно качественный, плата отмыта.
Радиаторы вполне приличные, хорошо закреплены и изолированы от схемы.
Дроссель намотан в 3 провода - правильное решение на таких частотах и токах.
Единственное - дроссель не закреплён и висит на самих проводах.

Реальная схема устройства:

Наличие стабилизатора питания микросхемы порадовало - это значительно расширяет диапазон входного рабочего напряжения сверху (до 32В).
Выходное напряжение естественно не может быть меньше входного.
Подстроечным многооборотным резистором можно настраивать выходное стабилизированное напряжение в диапазоне от входного до 35В
Красный светодиодный индикатор горит при наличии напряжения на выходе.
Собран преобразователь на базе широко распространённого ШИМ контроллера UC3843AN

Схема подключения - стандартная, добавлен эмиттерный повторитель на транзисторе для компенсации сигнала с токового датчика. Это позволяет повысить чувствительность токовой защиты и снизить потери напряжения на токовом датчике.
Рабочая частота 120кГц

Если-бы Китайцы и тут не накосячили, я-бы сильно удивился:)
- При небольшой нагрузке, генерация происходит пачками, при этом слышно шипение дросселя. Также заметна задержка регулирования при изменении нагрузки.
Это происходит из-за неверно выбранной цепи компенсации обратной связи (конденсатор 100нФ между 1 и 2 ногами). Значительно уменьшил ёмкость конденсатора (до 200пФ) и подпаял сверху резистор 47кОм.
Шипение пропало, стабильность работы возросла.

Конденсатор для фильтрации импульсных помех на входе токовой защиты поставить забыли. Поставил конденсатор 200пФ между 3 ногой и общим проводником.

Отсутствует шунтирующая керамика параллельно электролитам. При необходимости, можно допаять SMD керамику.

Защита от перегрузки имеется, защиты от КЗ нет.
Никаких фильтров не предусмотрено, входной и выходной конденсаторы не очень хорошо сглаживают напряжение при мощной нагрузке.

Если входное напряжение вблизи нижней границе допуска (10-12В), имеет смысл переключить питание контроллера со входной цепи на выходную, перепаяв предусмотренную на плате перемычку

Осциллограмма на ключе при входном напряжении 12В

При небольшой нагрузке наблюдается колебательный процесс дросселя

Вот что удалось выжать в максимуме при входном напряжении 12В
Вход 12В / 9A Выход 20В / 4,5А (90 Вт)
При этом оба радиатора прилично разогрелись, но перегрева не было
Осциллограммы на ключе и выходе. Как видно, пульсации очень велики из за небольших емкостей и отсутствия шунтирующей керамики

Если входной ток достигает 10А, преобразователь начинает противно свистеть (срабатывает токовая защита) и выходное напряжение снижается

На самом деле, максимальная мощность преобразователя сильно зависит от входного напряжения. Производитель заявляет 150Вт, максимальный входной ток 10А, максимальный выходной ток 6А. Если преобразовывать 24В в 30В, то конечно он выдаст заявленные 150Вт и даже немного больше, только вряд-ли это кому-то нужно. При входном напряжении 12В, можно рассчитывать только на 90Вт

Выводы делайте сами:)

Планирую купить +94 Добавить в избранное Обзор понравился +68 +149

Принципиальная схема самодельного преобразователя напряжения DC-DC для питания ноутбуков от источников с напряжением 12В. Напряжение питания ноутбука Toshiba-Satellite составляет 19V примаксимальном токе ЗА. К сожалению, это совсем не подходит для работы в автомобиле, так как там 12V.

Принципиальная схема

На рисунке в тексте приведена схема преобразователя напряжения, повышающего автомобильные 12V до ноутбуковских 19V, и поддерживающего это напряжение стабильным. В основе схемы DC-DC-преоб-разователь на микросхеме LT1070.

Напряжение от бортовой сети автомобиля через 5-амперный предохранитель и помехоподавляющие цепи поступает на точку подачи питания микросхемы А1 (вывод 5) Генератор микросхемы начинает работать и подавать импульсы на ключ, имеющийся в А1, включенный между выводом 4 и общим минусом (выв. 3).

Ключ периодически открываясь пропускает импульсный ток через первичную обмотку трансформатора Т1. Во вторичной обмотке Т1 наводится переменное напряжение, которое выпрямляется диодом VD2 и сглаживается емкостями С9, С10. Далее через цепь L2-C11-C12 постоянное напряжение 19V поступает на выход источника.

Рис. 1. Принципиальная схема DC-DC преобразователя напряжения для питания ноутбука от 12В.

Для контроля уровня выходного напряжения и его стабилизации используется внутренняя схема стабилизации А1. Суть ее работы в том, что она таким образом изменяет скважность импульсов, поступающих на первичную обмотку трансформатора, чтобы на выводе 2 А1 было постоянное напряжение 1,24V.

Для получения стабильного выходного напряжения нужно с выхода вторичного выпрямителя на VD2 постоянное напряжение через делитель подать на вывод 2 А1. А соотношение резисторов делителя должно быть таким, чтобы при правильном напряжении на выходе, на выводе 2 А1 было напряжение 1,24V. Резисторы делителя это R5 и R4. Точным подбором R4 устанавливают требуемое номинальное стабилизированное выходное напряжение. В данном случае, это 19V.

Детали и печатная плата

Для намотки трансформатора взято ферритовое кольцо внешним диаметром 32 мм. из феррита 2000НМ. Кольцо нужно обернуть тонким слоем фторопластовой пленки или лакоткани. Можно кольцо ничем не оборачивать, а покрытъ слоем эпоксидного лака. После его высыхания можно наматывать обмотки.

Вполне возможно, что для намотки трансформатора можно использовать и кольцо отличающегося диаметра и марки феррита, - нужно экспериментировать!

Первичная обмотка содержит 40 витков обмоточного провода, состоящего из двух вместе сложенных проводов ПЭВ 0,43. Можно использовать и одинарный провод сечением 0,*, но наматывать будет сложнее. Вторичная обмотка содержит 70 витков такого же двойного провода. Сначала наматывают первичную обмотку, а затем на её поверхность вторичную, укладывая провод в том же направлении, что и наматывали первичную. На схеме начала обмоток трансформатора отмечены точками.

Для дросселей используются кольца диаметром 18-20 мм. Они содержат по 30 витков такого же двойного провода, как и для намотки трансформатора. Схема преобразователя собрана на печатной плате с односторонним расположением печатных дорожек.

Микросхему и диоды необходимо укрепить на радиаторах. Общим радиатором может служить металлический корпус, в котором собран преобразователь (на плате диоды и микросхема специально расположены у края).

Рис. 2. Печатная плата схемы DC-DC преобразователя напряжения для ноутбука.

Микросхему можно установить на радиатор-корпус с использованием теплопроводной пасты, не изолируя, так как её радиаторная пластина соединена с 3-м выводом, а он с общим минусом (с «землей»). А диоды на радиатор нужно ставить через слюдяные прокладки на теплопроводной пасте, используя эбонитовые шайбы, так чтобы обеспечить изоляцию их катодных пластин от корпуса.

Рис. 3. Расположение деталей на плате преобразователя напряжения для ноутбука.

Налаживание

При правильном монтаже и исправных деталях налаживание сводится к проверке выходного напряжения. Если оно отличается от необходимого нужно изменить сопротивление резистора R4. Уменьшение сопротивления ведет к повышению напряжения, а увеличение к его понижению. Операцию замены резистора нужно делать только после выключения питания.

Поэтому, временно его можно заменить переменным сопротивлением 1,5-2,5 kOm. С помощью него нужно установить необходимое выходное напряжение, проверить на нагрузке, например, подключив лампу накаливания на 36V (или две последовательно включенные автомобильные лампочки как для задних фонарей).

После того как настройка будет завершена нужно, после выключения питания, отпаять переменный резистор и измерить его сопротивление. Затем установить на плату постоянный резистор такого сопротивления или очень близкого к полученному. Возможно, необходимого номинала не окажется и потребуется набрать R4 из нескольких резисторов используя последовательное или параллельное включение.

Включать преобразователь без теплоотвода под микросхему А1 рискованно, поэтому, даже в процессе налаживания, особенно при испытании на нагрузке, нужно установть её на какой-нибудь радиатор и периодически контролировать температуру. Этот же преобразователь можно использовать и для питания других приборов от бортовой сети автомобиля. Нужное выходное напряжение устанавливают подбором резисторов R5-R4 и числа витков вторичной обмотки трансформатора.

Кузянский Я. РК-2010-04.

Ниже представлена схема повышающего DC/DC конвертера, построенного по топологии boost, который, при подаче на вход напряжения 5…13В, на выходе выдает стабильное напряжение 19В. Таким образом, с помощью данного преобразователя можно получить 19В из любого стандартного напряжения: 5В, 9В, 12В. Преобразователь рассчитан на максимальный выходной ток порядка 0,5 А, имеет небольшие размеры и очень удобен.

Для управления преобразователем используется широко распространённая микросхема MC34063.

В качестве силового ключа используется мощный n-канальный MOSFET, как наиболее экономичное с точки зрения КПД решение. У этих транзисторов минимальное сопротивление в открытом состоянии и как следствие — минимальный нагрев (минимальная рассеиваемая мощность).

Поскольку микросхемы серии 34063 не приспособлены для управления полевыми транзисторами, то лучше применять их совместно со специальными драйверами (например, с драйвером верхнего плеча полумоста IR2117, ) — это позволит получить более крутые фронты при открытии и закрытии силового ключа. Однако, при отсутствии микросхем драйверов, можно вместо них использовать "альтернативу для бедных": биполярный pnp-транзистор с диодом и резистором (в данном случае можно, поскольку исток полевика подключен к общему проводу). При включении MOSFET затвор заряжается через диод, биполярный транзистор при этом закрыт, а при отключении MOSFET биполярный транзистор открывается и затвор разряжается через него.

Схема :

L1, L2 — катушки индуктивности 35 мкГн и 1 мкГн, соответственно. Катушку L1 можно намотать толстым проводом на кольце с материнской платы, только найдите кольцо диаметром побольше, потому что родные индуктивности там всего по несколько микрогенри и мотать возможно придётся в пару слоёв. Катушку L2 (для фильтра) берём готовую с материнки.

С1 — входной фильтр, электролит 330 мкФ/25В

С2 — времязадающий конденсатор, керамика 100 пФ

С3 — выходной фильтр, электролит 220 мкФ/25В

С4, R4 — снаббер, номиналы 2,7 нФ, 10 Ом, соответственно. Во многих случаях без него вообще можно обойтись. Номиналы элементов снаббера сильно зависят от конкретной разводки. , уже после изготовления платы.

С5 — фильтр по питанию микрухи, керамика на 0,1 мкФ

D1 — мощный диод Шоттки S10S40C (с материнки).

D2 — диод Шоттки (подойдёт практически любой)

R1, R2 — делитель напряжения. Для выхода 19В резисторы имеют номиналы 14 кОм и 1 кОм, соответственно.

R3 — резистор 4,7 кОм

T1 — силовой транзистор MOSFET, 6035AL (с материнки)

T2 — pnp транзистор. Подойдут, например, наш КТ361, буржуйский 2PA733 или подобные.

Готовый девайс :

Более подробную теорию работы повышающих преобразователей и методику их расчёта можно (предложенная в этой статье методика несколько отличается от типовой).

Данный повышающий dc-dc преобразователь предназначен для повышения напряжения бортовой сети автомобиля (+12В) до 19В, получая возможность подключения ноутбука к бортовой кабельной сети автомобиля. С учетом того, что ноутбук в наше время не редкость, то представленная в этой статье схема преобразователя очень даже актуальна для автомобилистов.

Данный автомобильный преобразователь на UC3845 построен по принципу однотактного повышающего преобразователя с накопительным дросселем. Схема имеет защиту по току.

Схема автомобильного преобразователя из 12В в 19В на UC3845

Работа схемы подробно описана в статье “ ”. В этой же статье вы прочтете о том, как работает защита по току, а также другую интересную информацию по данной схеме.

Микросхема UC3845 является ШИМ контроллером и по своей работе аналогична ШИМ UC3843.

Микросхемы UC3845 и UC3843 одинаковы по расположению выводов и могут быть заменены друг с другом в данной схеме. При замене этих ШИМ контроллеров стоит учесть тот факт, что при одинаковых времязадающих элементах (R2, C6) частота на выходах этих ШИМ (6 вывод) будет отличаться почти вдвое.

Дело в том, что в UC3845 есть триггер, который делит частоту пополам, а также ограничивает ширину импульса до 50% (речь пойдет ниже). И если настроить на одинаковую частоту генераторы микросхем UC3845 и UC3843 (встаем осциллографом на 4 вывод), то на самом выходе UC3845 (вывод 6) частота будет вдвое меньше выходной частоты UC3843. Не путайте выходную частоту, с частотой генератора ШИМ, она не всегда одинаковая (как в нашем случае).

К примеру, я установил в качестве R2 = 10кОм, а C6 = 1нФ, частота генератора UC3845 составила примерно 160кГц, а у UC3843 135кГц. На выходе UC3845 частота составила примерно 80кГц (то есть уменьшилась вдвое), а у UC3843 частота равнялась частоте генератора (135кГц).

Поэтому для UC3845 конденсатор C6 необходимо устанавливать емкостью не более 500пФ, а резистор R2 на 10кОм, чтобы на выходе получить частоту примерно 160кГц. Я установил 1нФ и все испытания проводил на этой емкости.

Еще одно отличие этих микросхем в том, что коэффициент заполнения импульса у ШИМ UC3845 равен 50%, в отличие от UC3843, коэффициент которой равен 100%.

Короче, при регулировке скважности у UC3843 ширина импульса может быть настолько большой, что займет почти весь период, а у UC3845 только половину периода. Как это можно пощупать, да легко! Собрав, этот автомобильный повышающий преобразователь из 12В в 19В на UC3845, при регулировке напряжения под нагрузкой 3А, напряжение на выходе преобразователя не сможет подняться больше 21В-22В (напряжение зависит от параметров дросселя), то есть напряжение будет “просаживаться”.

Казалось бы беда! Но нет, наш преобразователь должен выдавать напряжение 19В постоянного тока, и он со своей задачей справляется отлично при нагрузке 3А и 5А. Не зря эта микросхема является одной из лидеров в схемах преобразования 12-19 Вольт.

Некоторые параметры микросхемы

Максимальное входное напряжение не более.......... 30В

Выходной ток.......... 1А

Ток сигнала ошибки......... 10мА

Мощность рассеивания (корпус DIP).......... 1Вт

Максимальная частота генератора.......... 500кГц

Коэффициент заполнения.......... 50%

Рабочий ток.......... 11мА

Другие параметры и графики найдете в .

Элементы схемы

Резисторы схемы нужно выбирать на четверть Ватта (0,25Вт), за исключением R4 = 0,5Вт и R6 = 2Вт.

Конденсаторы C1, C2, C8, C9 должны быть рассчитаны на напряжение 25В. На выходе схемы достаточно одного электролита на 1000мкФ (C8 или C9).

Диоды VD1 и VD2 – Шоттки, или другие супербыстрые диоды. У меня установлена сборка Шоттки SB2040CT (20А, 40В), меньше 40В лучше не устанавливать. Можно на плату установить одиночный диод, но к сборке легче прикрепить радиатор.

R9 - многооборотный подстроечный резистор типа 3296. Многооборотные резисторы позволяют производить настройку плавно.

Самое интересное это дроссель L1. Индуктивность его должна быть в пределах 40-50мкГн. Хотя и при индуктивности 20мкГн преобразователь будет работать, только КПД будет ниже желаемого. Для его изготовления необходимо найти кольцо из порошкового железа желто-белого цвета. Чем больше диаметр кольца, тем лучше. У меня наружный диаметр кольца составляет 27мм, внутренний 14мм и толщина 11мм. Мотаем 20-22 витка двойным медным, лакированным проводом. Диаметр жилы 1мм. У меня диаметр жилы 1,4мм, я мотал одиночным проводом. Такой дроссель долговременно держит ток 3А при выходном напряжении +19В.

При намотке двойным (тройным) проводом обмотка может не уместится в один слой, тогда обмотку необходимо выполнять в два слоя, можно без изоляции (если эмаль провода не повреждена).

Пару слов о защите

От короткого замыкания (КЗ) будет спасать предохранитель FU1. Схема КЗ выдерживает, это показали мои опыты, главное чтобы источник напряжения +12В, подключенный к входу преобразователя, имел защиту и был достаточно мощным, а лучше чтобы это был автомобильный аккумулятор.

Работа защиты по току подробно описана в статье про UC3843 (смотри ссылку выше), здесь все работает аналогичным образом. Единственное добавлю, для работы преобразователя на UC3845 на выходной ток до 5А, необходимо сопротивление резистора R6 (датчик тока) уменьшить вдвое, или подключить в параллель два резистора по 0,1 Ома. Если не сделать данные манипуляции, Выходная мощность (напряжение и ток) будут ограничены защитой.

Два разных по габаритам дросселя…

Преобразователь с параметрами дросселя, описанными чуть выше, я эксплуатировал на нагрузку сопротивлением 6,2 Ома. Ток нагрузки составил 3А, при выходном напряжении 19В. В течение тридцатиминутной работы дроссель нагрелся до 45 градусов Цельсия, и рост температуры прекратился, это очень даже неплохо. Кстати КПД при такой нагрузке составил 82%.

После чего я установил второй дроссель, который намотан на кольце с наружным диаметром 18мм, внутренним 8мм и шириной 7мм. Провод одиночный, диаметр провода 1,4мм, 20 витков (40мкГн). При работе на выходной ток 3А в течение 30 мин, дроссель нагрелся до температуры 50 градусов Цельсия.

Теперь вам немного понятно, какие габариты сердечника выбрать. Конечно, если бы я мотал двумя жилами, нагрев бы снизился немного, но даже 55 градусов это вполне нормально.

В путешествие по Кавказу мы как и все туристы взяли с собой кучу электроники: 2 телефона, зеркальный фотоаппарат, мыльница, 2 жпса (автомобильный и туристический), зарядки для аккумуляторов фонарей, переносная радиостанция и ноутбук. Согласен - тут много лишнего, но ведь опыт - сын ошибок трудных:)

Самая большая проблема всего этого барахла - его нужно заряжать. Почти все современные устройства питаются либо от 5 Вольт, либо от 12, и благо в автомобиле есть оба напряжения. Но есть и относительно проблемные устройства: ноутбук и зеркалка, на которые нужно 220В для родной зарядки, или контроллер заряда 2S лития от 12 Вольт.Редко какой ноутбук сейчас работает от 12 вольт - это древние нетбуки требовали такого напряжения. Современные же почти все весьма прожорливые, хотят питаться от 18-20 Вольт и съедают, как правило, до 3 Ампер.

Вот у меня как раз такой помощник штурмана и лежит - Itronix IX-250. Это воистину не убиваемый кирпич, который можно использовать как табуретку, подставку под домкрат, сендтрак, доску для нарезки овощей и после этого открыть в нем карту и ехать дальше.

Собственно, этому товарищу нужны те самые 19В @ 3А которых штатно в машине не найти. Многие делают просто - покупают инвертор, который втыкают в прикуриватель, в инвертор обычную сетевую зарядку метра три длинной, и туда уже ноутбук. Получается следующее преобразование: =12В - ~220В - =19В.

Данная конструкция имеет единственный плюс - через инвертор можно заряжать не только ноутбук, но и другие штуки, типа той же зеркалки.

Однако, минусов намного больше:

Ооочень длинная борода конструкция, которая в длительной поездке, а тем более на соревнованиях будет постоянно мешаться под ногами.
кпд этой цепочки стремится к нулю:) на каждом преобразователе (инвертер+бп ноутбука) будет теряться до 10-30% энергии просто на нагрев воздуха.
покупать инвертор с модифицированным синусом мне не позволяют внутренние предубеждения и техническое образование, а хороший - с чистым синусом стоит приличных денег, и покупать его только для ноута сильно накладно.
качество недорогих инверторов оставляет желать лучшего, и это опасно для ноутбука.

Рассмотрев возможные варианты подключений я остановился на повышающем DC-DC преобразователе. То есть, будем поднимать напрямую постоянные 12(14)В бортовой сети в постоянные 19В. Такой преобразователь можно купить готовый, но те что были представлены в локальных магазинах совсем не внушали доверия: не вентилируемый пластиковый корпус, тонюсенькие провода, хлипкий пластик… Да что там говорить - у меня на работе такой, раскаляется аки чайник и начинает вонять.

Я решил попробовать заколхозить подобную штуку сам. Не буду лукавить - я не рассчитывал, и не разводил плату а воспользовался уже готовой:

150W Boost Converter DC to DC 10-32V to 12-35V
Входное напряжение: 10-32В
Выходное напряжение: 12-35В
Мак. выходной ток: 6А
Макс. ток на входе: 10А

В открытом виде, как понимаете, использовать его в машине невозможно, потому неплохо было бы найти для платы шкурку. Например :

Преобразователь предварительно нужно было немного допилить: зашунтировать электролитические конденсаторы керамикой для фильтрации ВЧ шума, и подправить обратную связь шим контроллера как советует .

Взяв в руки плату и корпус становится очевидно, что в коробочку плата с радиаторами не влезет, да и без - тоже. Чтобы впихнуть невпихуемое решено было выпаять радиаторы, силовые элементы (диодную сборку и мосфет) и подрезать на заточном станке плату до нужных размеров.

После срезания одного торца пришлось дорожку восстановить проводом, и пользуясь случаем выпаял светодиод и клемники - они там не нужны. Ноги силовых элементов пришлось изогнуть так, чтобы теплорассеивающая часть была на одном уровне с новым краем платы для хорошего контакта с новым «радиатором».

Диодная сборка и мосфет были посажены на термопасту через терморезиночку прямо на аллюминиевый корпус служащий радиатором и надежно закреплены винтом.

В качестве разъема был выбран GX16-4 - это «авиационный» 4х контактный разъем выдерживающий токи до 15 ампер по паспорту. По двум штырькам я пустил входящее напряжение, а по оставшимся двум - выходящее повышенное. Плюсом такого разъема является его относительная герметичность и надежная фиксация штекера.

Предвидя тяжелые условия эксплуатации я позаботился и о кабелях: входной был взят термостойкий многожильный 2*1мм2 в двойной силиконовой оболочке (Basoglu SIMH). Честно говоря, я даже не ожидал такого качества - кабель очень мягкий, приятный на ощупь, внутри внешней оболочки провода в тальке, паяется отлично. В качестве выходного использовал обычный ноутбучный коаксиал. Это как правило очень износостойкие кабели с хорошим сечением. Я давно уже использую такие для поделок, где на кабель будут приходится постоянные нагрузки. Штекер для ноутбука напаял из того что было (временно).

Оба кабеля с небольшими ухищрениями заделал в разъем, а на тонкий кабель надел пружинку - такая конструкция очень сильно продлевает жизнь кабелей около разъемов, т.к. намного увеличивает радиус изгиба и предотвращает заломы. Не лишним будет и ферритовое колечко на выходную линию для гашения помех.

Удобнее, конечно, было бы использовать две розетки в корпусе - на вход и на выход с разных сторон. Это и в монтаже удобнее, и «проходная» конструкция удобнее в эксплуатации. Но каждая пара папа-мама локально стоит 200р, сэкономил.

При желании и небольших усилиях конструкцию можно сделать полностью герметичной, ведь и у корпуса и у разъема уже есть задел на это.

Я своим ноутбуком смог нагрузить преобразователь только на 3.6А @ 11.8В на входе, при этом за 20 минут работы на таком токе корпус прогрелся немного сильнее окружающей температуры. Пирометр показывает 32,3°С. Измерять температуру алюминиевой коробки пирометром не совсем корректно, но даже после закрашивания области черным маркером показания не изменились.

Вот так выглядит вся конструкция в машине, ноут без аккумулятора для подтверждения работы. Пол часа работы ноутбука на холостом ходу никак не сказались на температуре преобразоателя, тем более от 13,8В бортовой сети ему будет работать проще, чем от 11.8В дома.

Бюджет вышел около 1000 рублей учитывая что половина деталей бралась в Китае. Если брать все локально - можно цены смело умножать на два.

Теперь о впечатлениях.
На мартовских выходных откатал аж двое соревнований: «Весенний прорыв» штурманом на боевом УАЗе и приуроченные к 8 марта «Королева авто», уже пилотом, на своей машине.

Уже на первых соревнованиях я оценил всё удобство зарядки - ничего нигде не висит и не болтается. Я зарядку включил в прикуриватель и все засунул под сиденье, а оттуда к ноуту шел один единственный кабель питания. Бп, кстати, почти не греется. Был момент, когда я не заметил, как вывалился штекер питания из ноута, и он около часа работал от батареи, после чего блоку питания пришлось тянуть и зарядку батареи, и работу ноута. А все усугублялось еще тем, что в уазе на полную работала печка дующая в ноги - аккурат под сиденье, и в этот момент корпус блока питания был по ощущениям градусов 45-50, то есть немного горячее, чем теплый.

Еще раз убедился в том, что сделал правильно, что купил толстый кабель - часто получалось так, что при крутом уклоне капотом вниз БП вылетал под ноги, и я какое-то время топтался по нему. Очевидно, тонкий кабель в таких условиях умрет намного быстрее.

Единственное, что, пожалуй, стоит изменить в связке БП - ноутбук - это разьем питания самого ноутбука. Нужно поставить туда что-то типа GX16-2, такого как на блоке питания. Это позволит предотвратить случайные выпадания штекера и вероятность облома гнезда от материнской плате в ноутбуке при рывке за кабель.


Самое обсуждаемое
Спортивные часы с пульсометром и шагомером, тонометром: обзор лучших моделей и отзывы Часы для спорта с пульсометром и шагомером Спортивные часы с пульсометром и шагомером, тонометром: обзор лучших моделей и отзывы Часы для спорта с пульсометром и шагомером
Mortal Kombat X системные требования на ПК Мортал комбат х на пк системные Mortal Kombat X системные требования на ПК Мортал комбат х на пк системные
Почему Chrome потребляет так много памяти и что с этим делать Почему Chrome потребляет так много памяти и что с этим делать


top